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We present a modern formulation of Embodied Question Answering (EQA) as the task of understanding
an environment well enough to answer questions about it in natural language. An agent can achieve
such an understanding by either drawing upon episodic memory, exemplified by agents on smart
glasses, or by actively exploring the environment, as in the case of mobile robots. We accompany our
formulation with OpenEQA — the first open-vocabulary benchmark dataset for EQA supporting both
episodic memory and active exploration use cases. OpenEQA contains over 1600 high-quality human
generated questions drawn from over 180 real-world environments. In addition to the dataset, we also
provide an automatic LLM-powered evaluation protocol that has excellent correlation with human
judgement. Using this dataset and evaluation protocol, we evaluate several state-of-the-art foundation
models like GPT-4V and find that they significantly lag behind human-level performance. Consequently,
OpenEQA stands out as a straightforward, measurable, and practically relevant benchmark that poses
a considerable challenge to current generation of AI models. We hope this inspires and stimulates
future research at the intersection of Embodied AI, conversational agents, and world models.
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Answer:
Two microwaves.
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Figure 1 lllustration of an episode history along with questions and answers from our OpenEQA benchmark, which contains
1600+ untemplated questions that test aspects of attribute recognition, spatial understanding, functional reasoning,
and world knowledge. In episodic-memory EQA (EM-EQA), agents parse a sequence of historical sensory observations,
and in active EQA (A-EQA), agents must explore real-world scanned environments to gather information to answer
questions. Open vocabulary answers are scored using our proposed LLM-Match metric, which we found to have
excellent agreement with human judgement in user studies.
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1 Introduction

AT agents are starting to transcend their digital origins and enter the physical world through devices like
smartphones, smart glasses, and robots. These technologies are typically used by individuals who are not
AT experts. To effectively assist them, Embodied AI (EAI) agents must possess a natural language interface
and a type of “common sense” rooted in human-like perception and understanding of the world. Recently,
“foundation models” (5) trained on massive datasets have emerged as a promising approach to develop these
capabilities. Against this backdrop, we propose that Embodied Question Answering (EQA) is both a useful
end-application as well as a means to evaluate an agent’s understanding of the world. Simply put, EQA is
the task of understanding an environment well enough to answer questions about it in natural language as
illustrated in figure 1. In this work, we present OpenEQA — the first open-vocabulary benchmark for EQA,
and use it to study performance of various state of the art foundation models (35; 27; 42; 16; 36; 20; 49).

Specifically, we study two variants of EQA under a common umbrella: episodic memory (EM-EQA) and active
exploration (A-EQA), depending on the agent platform. For instance, EM-EQA is applicable to devices like
smart glasses that can leverage episodic memory generated by human wearers to answer questions. This has
the potential to enhance the memory, perceptual capabilities, and general knowledge of the user. On the other
hand, A-EQA is relevant to mobile robots that can autonomously explore environments to gather necessary
information to answer questions. For example, to answer the question: ‘Q: Do I have Cayenne pepper left at
home?’, a robot can search the home before responding, ‘A: I found a bottle of Cayenne pepper in the pantry.’

The intersection of perception and language
has long been a fertile ground for research in
AI. While the broad problem of EQA (8; 52)
and VQA (32; 4; 6) have been studied exten-
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are: (1) videos and scans of real-world envi-
ronments like ScanNet (7), Gibson (45), and HM3D (37), as well as simulators capable of rending these
scenes (40; 33; 12; 22; 25); and crucially (2) LLMs capable of scoring open-ended answers. This combina-
tion allows us to source questions from human annotators by watching episodes, and then automatically
score responses of models against these annotated answers, enabling us to study a wide range of questions
and methods (see section 3). The combination of episodes from real-world environments and open-ended
questions makes OpenEQA distinct from previous EQA (8; 14), 3DQA (4; 32), and VQA (23; 34; 38; 1)
benchmarks that are either closed-vocabulary (i.e. a closed set of answer), require only a single frame, use
simple procedurally-generated scenes, or non-interactive in nature.

1.1 Our Contributions

1. Benchmark: Our primary contribution is a modern re-formulation of the EQA problem statement along
with a concrete evaluation benchmark (OpenEQA) that contains over 1600 questions sourced from over
180 real-world environments and scans (7; 47; 37). The questions were meticulously crowd-sourced to
be representative of real-world use cases. Each question was annotated by at least three individuals,
ensuring validity of questions and diversity in answer patterns. EM-EQA requires an agent to answer
questions by leveraging the provided episodic memory. For A-EQA, we focus on the subset of questions
in simulation of photo-realistic scanned environments. The EAI agent is spawned at an initial location
and must take any required exploratory actions to answer the question. The agent is rated on both
the correctness of the answer as well as efficiency of its actions, to reward agents that perform targeted
exploration specific to the question.



2. Evaluation: The open-vocabulary nature of our benchmark increases the complexity of evaluating answers
generated by various models. While human evaluations have been the gold-standard in benchmarking
LLMs, they can often be prohibitively slow and/or expensive. We thus utilize an LLM (35; 42) to score
answers based on similarity to ground truth answers generated by humans. Through a double blind
study, we find that there is a strong correlation between our LLM-Match metric and human preferences.

3. Baselines: Additionally, we provide a core set of baseline results and implementations. These include
recently released multi-modal LLMs like GPT-4V, Claude-3, and Gemini-1.5; as well as Socratic use
of LLMs (35; 42) by leveraging captioning models (28) or generated scene-graph representations (16).
Through our evaluation, we find that GPT-4V is the strongest baseline achieving an aggregate score of
48.5%. While impressive, this significantly lags behind human-level score of 85.9% on our benchmark,
underscoring its difficulty and relevance for our community. In particular, all the current generation of
foundation models especially struggle at questions that require spatial understanding of objects and
scenes, often performing no better than “blind” LLMs, highlighting a major deficiency.

2 Benchmark and Evaluation

In this section, we provide an overview of the EM-EQA and A-EQA problem statements, how they are
instantiated in OpenEQA, the dataset collection process, and the evaluation metrics.

2.1 Episodic-Memory Question Answering

The episodic memory EQA (EM-EQA) task is concerned with the setting where an agent must develop an
understanding of the environment from its episodic memory to answer questions. This is particularly relevant
for EAI agents embedded in devices such as smart glasses, which cannot autonomously explore the world
and must rely on the history of observations to assist users (e.g. ‘Q: I can’t find my keys, where did I leave
them? A: On the kitchen island.’) An instance of EM-EQA is defined by the 3-tuple: (Q, H, A*) where

Dataset Examples Dataset Statistics
Epmode Hmory H Questions by Data Source
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Figure 2 Example questions and dataset statistics of OpenEQA. The episode history H provides a human-like tour of a
home. EQA agents must answer diverse, human-generated questions @ from 7 EQA categories, aiming match the
ground answers A*. Tours are collected from diverse environments including home and office locations (not shown
above). Additional dataset examples are in appendix L. Dataset statistics (right) break down the question distribution
by video source (top), question category (middle), and episodic memory vs active setting. Note that, by design, the
HM3D questions are shared across the EM-EQA and A-EQA settings.



Q refers to an open-vocabulary question, H is a history of observations (i.e. episodic memory), and A* is
a ground truth answer (e.g. as annotated by a human). The agent’s task is to generate an answer using
the episodic memory, i.e. A = EMEQA _ Agent(Q, H), that is “similar” to the ground truth answer A*. A
concrete function signature that is expected for the agent is described in algorithm 1 in appendix C.

2.2 Active Embodied Question Answering

The Active EQA (A-EQA) problem studies the setting where an autonomous agent can answer questions by
taking exploratory, information gathering actions when necessary (e.g. ‘Q: Do we have canned tomatoes at
home? A: Yes, I found canned tomatoes in the pantry.’). For simplicity, our benchmark considers questions
that require only navigation actions. In principle, this can be extended to mobile manipulators to allow for
both navigation and manipulation actions (e.g. opening doors and cabinets) (50). More formally, an instance
of A-EQA is specified by the 3-tuple (@, S, A*). Similar to Section 2.1, ) and A* denote the question and
human annotated answer, respectively. S refers to the simulator initialized at the appropriate state state (40),
and encompasses all details and assets needed to recreate the environment. Once the agent is spawned at
S, it must take any necessary exploratory actions before producing an answer A. Please see Algorithm 1
in appendix C for a concrete function signature of an A-EQA agent. Once the agent generates answer A, it is
evaluated both for the correctness of the answer as well as the efficiency of actions.

2.3 OpenEQA Dataset Collection and Validation

To establish benchmarks for EM-EQA and A-EQA, we collect a human-generated dataset of (Q, H, A*) using
videos (7) and 3D scans of real-world environments (37; 47; 33; 40). Then, we meticulously validate each
question-answer pair to provide a high-quality benchmark for EM-EQA and A-EQA. The dataset is designed
to reflect the types of questions that users might ask an Al assistant embedded in smart glasses or a mobile
robot assistant. We present examples and dataset statistics in figure 2 and compare it to existing benchmarks
in table 1.

Data Sources. We collect episode histories H from two sources: ScanNet (7) and HM3D (37; 47). For ScanNet,
we utilized RGB-D data captured from human exploration in various indoor settings, such as bedrooms and
offices, directly translating these videos into episode history H. We selected 90 validation scenes and 10 test
scenes from ScanNet. For the scans in HM3D rendered through Habitat, we define a heuristic exploration
policy to mimic human behavior and manually verify that exploration trajectories adequately explore the
space, ultimately resulting in episode histories for 87 validation scenes, as detailed in appendix A.

Question Generation. In a preliminary experiment, we showed human annotators the history H and asked
them to generate question-answer pairs (@, A*) while playing the role of end users. This exercise led to the
identification of seven EQA question categories that broadly encompass the range of questions asked of Al
assistants. They test an agent’s ability to (1) recognize objects (e.g. what is on the coffee table?), (2) recognize
object attributes (e.g. colors or shapes), (3) recognize object states (e.g. open or closed), (4) localize objects
(e.g. where are my keys?), (5) perform spatial reasoning (e.g. I'm sitting on the couch watching TV, in which
direction should I turn to find the kitchen?), (6) perform functional reasoning (e.g. how can I cool down
this room?), and (7) utilize outside world knowledge (e.g. who/what is depicted in a painting?). The final
OpenEQA dataset focuses on these seven categories. Annotators were asked to generate two questions and
answers per category after viewing H. Illustrations of the question categories are provided in figure 2, and
additional details on the dataset collection and interface are in appendix A.

Dataset Validation. Each question created by humans underwent further examination by two independent
annotators. Validators watched the episode history and assessed whether the question was unanswerable,
ambiguous, or if the answer was incorrect. Any question-answer pair with identified issues was discarded. The
interface for validation is provided in appendix A. The final dataset includes 1636 questions following the
statistics in figure 2.

Dataset Splits. In our benchmark, the validated (@, A*) pairs are used for EM-EQA, and reused for A-EQA
since we recorded S in addition to H for simulated scenes. Specifically, A-EQA agents are initialized at the
same start state S that was used to generate the episodic memory H for EM-EQA. The existence of a feasible
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Figure 3 Illustration of LLM-Match evaluation and workflow.

trajectory H provides proof that A-EQA questions are answerable. However, they can potentially be answered
more efficiently through targeted exploration.

Additional Object Localization Answers. Among the 7 EQA categories, object localization questions pose a
unique challenge for evaluation, because they often have multiple correct answers with differences that go
beyond rephrasing. For example, the question ‘Q: Where is the toaster?’ may have multiple correct answers
such as ‘A1: to the right of the stove’ or ‘A2: to the left of the fridge’. Thus we collect 4 additional answers
from 2 additional annotators resulting in 5 answers per object localization question that reflect a natural
distribution of answers that humans would expect from each localization question.

2.4 LLM-Match: Evaluating Correctness of Answers

While the open-vocabulary nature makes EQA realistic, it poses a challenge for evaluation due to multiplicity
of correct answers. One approach to evaluation is human trials, but it can be prohibitively slow and expensive,
especially for benchmarks. As an alternative, we use an LLM to evaluate the correctness of open-vocabulary
answers produced by EQA agents. Specifically, we adapt the evaluation protocol introduced in MMBench (30)
to the EQA task. Given a question @);, human annotated answer A}, and model output A4;, the LLM is
prompted to provide a score o; € {1,...5}. On this scale, 1 indicates an incorrect response, 5 is a correct
response, and intermediate values represent levels of similarity. We calculate an aggregate LLM-based

correctness metric (LLM-Match) as:

1 Lo -1
O:Nzi: T * 100% . (1)

LLM-Match is illustrated in figure 3, detailed in app. B, and validated against human judgement in section 5.

2.5 Evaluating Efficiency for A-EQA

In A-EQA, we evaluate an agent based on two criteria: (a) correctness of the answer based on similarity with
human annotation A* as described in equation (1); and (b) efficiency, which measures how quickly the agent
answered the question and favors agents that perform targeted exploration necessary for the question.

We measure efficiency by weighting the correctness metric o; by the normalized length of the agent’s path
l;/max(p;,l;), where p; is the timesteps taken by the agent and I; is the timesteps taken in a ground truth



path that is sufficient for answering the question @);. Formally, our efficiency metric is defined as:

1 A (0; — 1) l;
E=— ! ! 1 2
N XZ: 4 x max(p;, ;) x 100%, 2)

which can be seen as modified version of the success weighted by path length (SPL) (2), a metric commonly
used to measure the efficiency of navigation agents. We note that the ground-truth path was generated by
using a scripted exploratory agent. Since this path was used to construct the (Q, A) pairs, it is guaranteed to
contain sufficient information to answer. However, we note that these paths need not be optimal, and thus in
principle E > 100% is theoretically possible.

3 EQA Agents

This section describes the different EQA agents we study and evaluate in this work. Our guiding principle is to
explore different ways in which foundation models (specifically LLMs and VLMs) can be used for EQA without
any additional fine-tuning. Towards this goal, the family of agents studied are: (1) blind LLMs (35; 42), (2)
Socractic LLMs w/ frame captions (27), (3) Socractic LLMs w/ scene-graph representations (16), and (4)
VLMs that can directly process multiple frames (e.g. GPT-4V (49)). For simplicity, we first describe the
agents in the EM-EQA setting, and subsequently discuss extensions to A-EQA. All agents have the general
signature of A = Agent(Q, H) and contain a language model component that generates the answer. The
agents primarily differ in their perception capabilities and how they process H. In addition to these agents,
we also study how humans perform in our benchmark.

_ The text-only or ‘blind” LLM agent simply produces an answer based on the question ¢ without
considering any visual information about the scene, i.e. A = LLM(|w, Q]), where w is a generic prompt that
we prepend to the question. See appendix D for additional details. This agent provides a reference for how

far we can get purely using prior world knowledge and/or random guessing (e.g. yes/no questions). For the
LLM choice, we present results with both GPT-4 (35) and LLaMA-2-70B (42).

Socratic LLMs w/ Frame Captions. This is the simplest agent we study that leverages the perceptual informa-
tion from the episodic memory H. Let { X1, Xs,... Xk} be K frames drawn from the episodic memory H. We
first leverage an image captioning model (e.g. LLaVA (27; 28)) to generate z; = Captioner(X;), i =1,... K.
These captions provide a language description of the episodic memory to the LLM, which could allow it to
answer better than a blind agent. The final answer is computed by the agent using a generic prompt, the
aforementioned frame captions, and the question, i.e. A = LLM([w, 21, 22, ...2K,Q]). See appendix D for
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Figure 4 EQA Agents (Left) Socratic LLMs w/ Image Captions generates captions for frames from episodic memory and
provides it as context to an LLM to generate answer. (Middle) Socratic LLMs w/ Scene-Graph Captions leverage an
object-centric scene-graph representation of episodic memory, which includes captions of object-centric crops and their
3D locations. (Right) Multi-Frame VLM directly processes visual frames from episodic memory to answer the question.



an example of the input. In practice, we sample K frames uniformly over time from H, with K = 50 for
EM-EQA and K = 75 for A-EQA. For the captioning model, we use LLaVA-v1.5 (27), and for the LLM we
study both GPT4 (35) and LLaMA-2-70B (42).

Socratic LLMs w/ Scene-Graph Captions. We next study agents that leverage an object-centric scene-graph

representation of H. The motivation for such agents is that an object-centric representation might allow for a
more fine-grained perceptual understanding of objects, and provide a textual representation that might be
easier for LLMs to reason over. Object-centric 3D world representations involve constructing a scene graph
G = SceneGraph(H) that contains a description of the objects in the scene, their semantic attributes such as
color and 3D locations, and their relationships. We study two methods of constructing such a scene-graph: (1)
ConceptGraph (16); and (2) Sparse Voxel Map (SVM). ConceptGraph (CG) generates a textual scene-graph
representation by first detecting various objects in the scene, extracting the 3D location of objects using
camera pose and depth information, and sematic descriptions of objects by using an image captioning model
on crops of the object extracted from the video. We use the publicly released implementation of CG, which
uses Grounded-SAM (29; 19) with RAM (54) for object detection and LLaVA-v1 (28) for image captioning.
SVMs are constructed similarly to CGs, but differ in the post-processing of object detections and in the image
captioning model used. See appendix E for details. Once a textual scene graph G is generated, we use it for
EQA as A = LLM([w, G, Q]).

Multi-Frame VLMs. The most generic agent for EQA is one that can directly process the entire episodic
memory to answer questions, i.e. A = MultiFrameVLM(|w, @, H]). The recently released GPT-4V model (49)
is capable of processing up to 50 frames (through the API) in addition to textual queries. We thus extract 50
frames uniformly spaced from H and provide it to GPT-4V in addition to prompts for generating the answer.
More recently, other multi-frame VLMs have also been released such as the Claude and Gemini family of
models, which we benchmark as well. See appendix D for details on implementations and prompts, as well as
Table 4 for full results across all models.

Human Agent. Finally, we also run a study with human participants to establish human-level performance
metrics on our benchmark. We collect answers from a set of human annotators by providing each annotator
with a video of the episode history H and asking them to answer all of the questions @ for that scene. We
enrolled two independent participants for this benchmarking exercise and found strong agreement in responses.

Agents for A-EQA. So far, we have described agents that can answer questions ) given an episode history H.
However, in the case of A-EQA, no explicit H is provided, and agent must generate its own observations
through exploration. In this work, we provide the simplest baseline for A-EQA that explores environments in
a question agnostic manner using frontier exploration (48). By leveraging the episodic memory from frontier
exploration as H, we can re-use all the aforementioned agents, just with a different and self-generated episodic
memory. We note that the efficiency score of such an agent is expected to be poor, and we leave open the
challenge of more efficient A-EQA agents to future work.

Force-A-Guess when Agents Abstain. To recall, all EQA agents we study involve an LLM component and differ
primarily in how the episode history is used. In our experiments, we observed that such agents can often be
overly conservative and abstain from answering, especially when a model thinks it lacks sufficient context. In
our evaluation metric, we do not make a special provision for abstaining, and consider abstaining an incorrect
answer. Thus, we force the agent to take a guess to give it at least an informed random chance, instead of
immediately counting it as a failure.

Despite our best efforts, we were not able to force non-blind agents to guess through prompt engineering.
However, blind LLMs are able to guess purely based on prior knowledge, and seldom abstain. Thus, for
non-blind agents we first check if the agent abstained. If it did, we force the corresponding blind LLM to
guess, and use the generated answer. Full details of this protocol are in appendix F and an analysis of the
effects of this procedure are in appendix G. All results in the main paper use this force-a-guess protocol.

4 Experimental Results on OpenEQA

We present evaluation results of agents described in section 3. Table 2 reports the overall LLM-Match scores
(C) (see Eq. 1) of the baselines evaluated on the EM-EQA and A-EQA benchmarks, where EM-EQA results



Table 2 LLM-Match and efficiency scores on OpenEQA. EM-EQA results are broken down by data source (ScanNet,
HM3D, and ALL). A-EQA results include both LLM-Match scores (Eq. 1) and agent efficiency (Eq. 2). *For A-EQA,
GPT-4V scores are calculated on a random subset of 184 questions.

EM-EQA A-EQA

4 method ScanNet HM3D ALL HM3D HM3D

metho equation (1) equation (1) equation (1) equation (1) equation (2)
1 GPT-4 32.5+1.2 35.541.7 33.5+1.0 35.5+1.7 N/A
2 LLaMA-2 27.9+1.2 29.0+1.7 28.3+1.0 29.0+1.7 N/A
Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 45.4+1.3 40.0+1.8 43.6+1.1 38.1+1.8 7.0+0.4
4 LLaMA-2 w/ LLaVA-1.5 39.6+1.3 31.1+18 36.8+1.1 30.9+1.8 5.9+0.4
Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ CG 37.8+1.3 34.0+1.7 36.541.0 34.4+1.8 6.5+0.4
6 LLaMA-2 w/ CG 31.0+1.2 24.2+1.6 28.7+1.0 23.9+1.6 4.3+0.3
7 GPT-4 w/ SVM 40.9+1.3 35.0+1.8 38.9+1.0 34.2+1.8 6.4+0.4
8 LLaMA-2 w/ SVM 36.0+1.3 30.9+1.8 34.3+1.0 29.9+1.7 5.5+0.4
Multi-Frame VLMs
9 GPT-4V 57.4+1.3 51.3+1.8 55.3+1.1 41.8+3.2* 7.5+0.6*
Human Agent 87.7+0.7 85.1+1.1 86.8+0.6 85.1+1.1 N/A

are separately reported on each of the data sources (i.e., ScanNet and HM3D). It also presents the efficiency
score on A-EQA as described in Eq. 2, along with bootstrapped standard errors. Based on the results, we
first share some observations and remarks, and discuss specific observations in section 5.

1. Humans achieve excellent performance on the benchmark (>85%), which confirms the validity of the
benchmark and correctness of evaluation metrics.

2. Multi-frame VLMs (i.e., GPT-4V) outperform other agents. This suggests that a tight integration of
perception and language may significantly benefit EQA.

3. We find that blind LLMs are surprisingly strong baselines, with GPT-4 and LLaMA-2 achieving a score
of 33.5 and 28.3 respectively on EM-EQA. While this is substantially lower than GPT-4V or human-level
performance, it suggests a large degree of regularity in the world and that answers to several questions
can be “guessed” without explicit visual context of a specific environment. See section 5 for additional
discussion. We also note that early works in VQA(1) found blind agents to be strong baselines.

4. Within each family of agents we consistently find that agents that use GPT-4 as the LLM outperform
LLaMA-2. This suggests that larger LLMs can be a key enabling factor for good EQA performance.

5. In the EM-EQA benchmark, we find that all agents with access to perceptual information in the form of
frame captions or scene-graphs outperform blind LLMs (under the force-a-guess protocol). This again
underscores the importance of perception for EQA.

6. When comparing the performance of agents in EM-EQA and A-EQA, we generally observe lower scores
in A-EQA. In part, this is due to longer trajectories due to the use of exhaustive exploration in our
A-EQA agents, which forces a longer history representation often with irrelevant information for a
specific question. In several situations, this makes the performance of various agents comparable to that
of blind LLMs or even lower (e.g. GPT-4 w/ ConceptGraphs). This underscores the challenging nature
of the A-EQA benchmark and the importance of efficient exploration in interactive settings.

Figure 5 breaks down performance on EM-EQA (human-like trajectories) by the seven question categories
described in section 2.3. Among all the categories, EQA agents excel at functional reasoning and object state
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Figure 5 Category-level performance on EM-EQA. We find that agents with access to visual information excel at localizing
and recognizing objects and attributes, and make better use of this information to answer questions that require
world knowledge. However, on other categories performance is closer to the blind LLM baseline (GPT-4), indicating
substantial room for improvement on OpenEQA. See scores for all methods in appendix H.

recognition questions, with LLM-Match scores around 50% when averaged across all agents. Additionally,
EQA agents perform well on world knowledge questions, which require a commonsense understanding of the
world and represent an EQA category where large language model may add substantial value. By contrast,
EQA agents perform poorly on spatial reasoning questions. To our surprise, agents that use scene-graph
representations are no better than frame-captioning agents, even on spatial reasoning questions. This suggests
that more work is needed to incorporate understanding of space and geometry into large models. While most
models achieve nontrivial performance on all categories, there remains a large gap between even the best
method and human-level performance.

5 Analysis and Discussions

Human Alignment and Robustness of LLM-Match Evaluating open-vocabulary responses to questions is an open
challenge in AI. While human evaluation remains the gold-standard, it is also expensive and time consuming.
An automatic evaluation metric is preferable for benchmarking, fast iteration, and model selection. For this,
we proposed the LLM-Match metric in section 2.4. We now test this metric along two axis: (1) How closely
aligned is the LLM-Match metric with human evaluators? (2) How sensitive is the LLM-Match metric towards
specific choice of prompts and the LLM?

To answer the question on human alignment, we designed an experiment to measure the agreement between
LLM-Match metric and human evaluators. We uniformly sampled a subset of 300 questions from the dataset.
To ensure coverage of the answer distributions, we sampled responses from blind LLaMA-2, GPT-4V, and
human annotated answers. In a double blind study, we then asked 4 human evaluators to score the 300
responses using an evaluation prompt similar to the one used by LLM-Match. The evaluators were provided
no information about the source of the response. We found a Spearman’s p = 0.909 between human and LLM
evaluation (bootstrap CI=(0.883,0.928), N=9999), indicating excellent agreement with human judgement. For
reference, human evaluators correlated with each other in p € [0.91,0.93]. Essentially, LLM-Match agrees
with human evaluation nearly as much as human subjects do with one another.



To answer the question of LLM-Match robustness, we designed an experiment to test its sensitivity under small
perturbations of the prompt (see appendix J for details). Table 8 in appendix J demonstrates that changing
the LLM’s role from ‘AT’ to ‘Score Master’ or ‘professional evaluator’ does not significantly change the results,
and scores between any two treatments have a tight correlation with a Spearman’s p > 0.95. Similarly, Table 9
in appendix J shows analogous results p > 0.95 for changing the description of a ‘5’ from ‘perfect match’ to
‘contains correct answer’; ‘similar to a reasonable person’, or ‘reasonable professional’. Sensitivity to seed and
temperature has negligible impact as well. Finally, we vary the LLM used for scoring and find that GPT4 has
excellent agreement with human judgement, but GPT-3.5 and LLaMA-2 have significantly lower correlation
(p<0.7). Thus, for now, we recommend using only GPT4 for LLM-Match.

Discussion on Blind LLMs. We found blind LLMs to be a surprisingly strong baseline, considering they have no
access to visual information about the scene. Upon closer inspection, we found that blind LLMs, especially
GPT-4, are good at “guessing” answers to EQA questions. For instance, consider the question: ‘Q: What is
the color of the staircase railing?” GPT-4 answers ‘brown’, and because many houses have a brown staircase
railing, this guess is often correct. This indicates a certain degree of regularity in the world such that answers
to many questions are similar across different environments. Nevertheless, we establish a strong lower bound
of performance achievable without perception, and we can infer that any additional gains are due perception
and semantic grounding.

Force-A-Guess. When studying Socractic LLMs augmented with perceptual information (image or scene-graphs
captions), we found that agents often abstained from answering the question (e.g. ‘Not enough information to
answer the question.’). As noted in section 3, our LLM-Match metric does not give preferential scoring of
abstaining vis-a-vis an incorrect answer. Thus, we defaulted to the answer from the blind LLM powering
an agent when it abstained. In appendix G, we provide statistics on how frequently each agent abstained,
and study performance without defaulting to a blind LLM. In general, we find that GPT-4-based Socratic
agents abstain frequently (up to 55% of the time), and thus, rely more heavily on the blind LLM-based score
correction that we apply in our benchmark evaluations. By contrast, GPT-4V and LLaMA-2 based mod-
els do not abstain as often (up to 12% of the time), and thus the differences between the two variants is minimal.

Does explicit coordinate information help? The primary motivation for object-centric scene-graph representations
is to have fine-grained perceptual understanding of objects and their locations. Thus, we intuitively expect that
agents equipped with explicit object locations will fare better in questions that require spatial understanding.
Surprisingly, we find in table 2 that such agents fare no better than Socratic LLMs that simply use frame-level
captions. We run an ablation experiment (appendix K) where we remove explicit bounding box and size
information from the scene graph, and find that this does not significantly affect performance, indicating that
these LLMs are not able to effectively use 3D coordinate information in text.

6 Related Work

The intersection of perception and language (4; 17; 24; 26; 10; 31; 13; 56; 21) has long been a fertile ground for
AT research. Prior works studying perception and language have proposed Visual Question Answering (VQA)
benchmarks, such as VQA-v1 (1), VQA-v2 (15), OK-VQA (34) and A-OKVQA (38), that focus on answering
questions from a single image. Later works extended question answering tasks to videos (55; 53; 23) and 3D
scenes (32; 6; 4; 17). These include benchmark such as VideoQA (55), SQA3D (32) and ScanRefer (6). While
conceptually similar to our EM-EQA setting, these prior benchmarks focused on singular and narrow themes
such as situated reasoning, object localization, object recognition, activity recognition, temporal window
localization, and future forecasting (44; 18; 24; 53; 23; 46; 32; 6). Another closely related line of work is prior
benchmarks on Embodied QA (8; 43; 52; 9) and is conceptually similar to our A-EQA setting. They focus
on leveraging RGB-D to accomplish navigation tasks in simulation (43), in which the agent must seek out
multiple target locations or objects sampled from a closed vocabulary set (52) Our work takes inspiration
from such prior works (8) and modernizes it to be relevant in the current era of foundation models. To our
knowledge, our benchmark is the only one that incorporates all elements of a real-world use case for EQA: (1)
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The study of both episodic memory and active settings to accommodate for a wide variety of embodied agents
like smartphones and mobile robots, (2) High quality real-world datasets with broad and non-templated
questions, and (3) Embracing open-vocabulary interactions with users. In addition, our baselines use modern
foundation models trained on vast internet data, enabling world knowledge beyond the reach of methods
trained solely on simulated interactions.

LLMs have been used to scale the size of benchmarks either with their use for question and answer generation
(24) or during evaluation time (30; 51). Evaluation of open-vocabulary answers remains an open problem
in AI. While the gold-standard remains human evaluations, they are time-consuming and expensive. An
automatic evaluation process is desirable for benchmarking, quick iteration of research ideas, and model
selection. We setup such a process by taking inspiration from recent works that study if LLMs can be used
as an evaluation proxy in place of human raters (30). Through a randomized control trial, we found a high
correlation between human ratings and GPT-4, as evidenced by a Spearman correlation coefficient of 0.909.

7 Conclusion

We introduce OpenEQA, the first realistic benchmark to study open-vocabulary EQA in both episodic memory
and active settings. Specifically, OpenEQA includes challenging, human-generated, open-vocabulary questions
that require understanding an environment and answering question in natural language. Our benchmark is
primarily enabled by (1) videos and scans of real-world indoor environments and (2) LLMs that can be used
for scoring open-ended answers in an efficient and reliable manner, as we demonstrated through our analyses.
We use OpenEQA to benchmark various state-of-the-art foundation models and their combinations. This
includes approaches that leverage image captions, scene-graph construction, and multi-frame VLMs such
as GPT-4V. Ultimately, we find a large gap between the best models (GPT-4V at 55.3%) and human-level
performance (at 86.8%). In particular, for questions that require spatial understanding, the aforementioned
agents perform no better than blind LLMs, suggesting that further improvement on perception and semantic
grounding is necessary before EQA agents are ready for real-world domains. In an era where LLMs are
smashing hard QA tasks (e.g. SAT math exams), OpenEQA stands out as a straightforward, quantifiable,
and practically relevant benchmark that poses considerable challenge to the current generation of foundation
models. We thus believe OpenEQA is well positioned to serve as barometer for tracking future progress in
multimodal learning and scene/environment understanding.
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Appendix

A OpenEQA Benchmark Details

This section provides further details on the construction of the OpenEQA benchmark (section 2.3). Specifically,
we describe the process for generating human-like episode histories H for EM-EQA (appendix A.1), the
interface for collecting question-answer pairs (@, A*) (appendix A.2), and the interface used to validate the
dataset (appendix A.3).

A.1 Generating Episode Histories

Episode histories H provide agents with observations of the environment, and are used for the EM-EQA split
of OpenEQA in both ScanNet and HM3D environments (see section 2). The ScanNet dataset was originally
collected by people who were asked to scan indoor environments with an RGB-D camera. We use the initial
30 seconds (or 600 frames) of these human trajectories from ScanNet as EM-EQA episode histories H.

HM3D consists of scanned 3D environments, but does not come with pre-collected environment tours. Thus,
we generate episode histories H using a two-step, semi-automated process. First, we generate a shortest-path
trajectory from a starting location xg.. to a destination x4s in the environment. We select locations such
that the geodesic distance between xg and zqs is > 10m and the path curves (enforced by the criteria that
the geodesic path distance > 1.1 x Euclidean path distance). Under these constraints, the paths typically
traverse multiple rooms in the environment. To collect an episode history H, an agent travels along the path,
while scanning the scene every 1m by rotating up to 180°. These scans are intended to mimic human-like
exploration behavior. After collecting the trajectories, we manually inspect each trajectory to ensure they
properly explore the scene; we exclude trajectories with extended periods closely facing walls. This process
results in one episode history H for 63 different HM3D validation environments.

A.2 Collecting Question-Answer Pairs (), A*)

We use a Google Form to collect question-answer pairs (@, A*) annotations from 8 different Al researchers.
Specifically, the annotators watch a video of a given episode history H, and generate questions for the 7
categories listed in section 2.3. In the form, each category is described and one to two good and bad example
questions are provided.

A.3 Interface for Dataset Validation

After the initial collection of question-answer pairs ), A*, we ask two independent people to validate each
question. Specifically, the validators are shown an episode history H and a corresponding question ) on a
simple HTML page. They are asked to provide an answer or mark the question as invalid (i.e. ambiguous or
unanswerable). For the subset of object localization questions, we ask the validators to provide two answers
for each questions because referring expressions often have multiple valid options (e.g. an object may be both
deft of the sink’ and ‘right of the stove’). We remove any question marked invalid by either validator.

B LLM-based Evaluation Details

OpenEQA questions often require open-ended answers, we use an LLM to evaluate correctness of answer
produced by EQA agents. We prompt an LLM to compare human annotated answer A} and model output A;
given a question ); and output a score o; on a scale of 1 to 5. On this scale, 1 indicates an incorrect response,
5 is a correct response and intermediate values represent different levels of similarity. Since questions can
often have multiple correct answers, we also provide extra answers to the LLM prompt during scoring. We
show the LLM prompt in Figure 6. Given the scores o;, we calculate an aggregate LLM-based correctness
metric (LLM-Match) using Equation (1).



Figure 6 Promptused for LLM-Matchscoring. The placeholders {question}, {answer}, {extra_answers}, and {prediction}
are replaced by the question @, ground truth answer A*, additional answer, and the agent’s predicted answer A,
respectively. Note that the extra answers are only available for object localization questions. When not available,
corresponding sections of the prompt are omitted.

You are an Al assistant who will help me to evaluate the response given the question, the correct answer, and
extra answers that are also correct. To mark a response, you should output a single integer between 1 and
5 (including 1, 5). 5 means that the response perfectly matches the answer or any of the extra answers. 1
means that the response is completely different from the answer and all of the extra answers.

Example 1:

Question: Is it overcast?

Answer: no

Extra Answers: ['doesn’t look like it’, 'no’,’
Response: yes

Your mark: 1

it’s sunny’]

Example 2:

Question: Who is standing at the table?
Answer: woman

Extra Answers: ['a woman’, ’a lady’, ’'woman’]
Response: Jessica

Your mark: 3

Example 3:

Question: Are there drapes to the right of the bed?

Answer: yes

Extra Answers: [’yes, there are drapes’, 'yeah’, ’the drapes are to the right of the king bed’]
Response: yes

Your mark: 5

Your Turn:

Question: {question}

Answer: {answer}

Extra Answers: {extra_ answers}
Response: {prediction}

C EQA Agent Function Signatures

In this section, we describe the function signature that is expected from an agent by OpenEQA benchmark.

Box 1 describes the function signature for the EM-EQA task. An agent is expected to produce a text answer
to a question based on an episode history. The episode history generally consists of RGB, depth, camera pose,
and camera intrinsic information. The benchmark does not prescribe any specific way to use the history. A
variety of different approaches and representations of the history can be pursued by researchers, such as point
clouds, NeRFs, or instance maps. Since all methods have the same set of episode history information at their
disposal, it allows for a fair comparison of methods. The final natural language answer is evaluated using
LLM-Match metric described in section 2.4 and appendix B.

Similarly, Box 1 also describes the expected function signature for A-EQA task. Here, an agent does not
receive an episode history and must generate its own experience through exploration. To allow standardization,
we provide access to the simulation environment and start state as part of the benchmark. The state allows
for instantiating an environment and fixing the starting location of the agent and various objects. We do not
prescribe a specific navigation API for the benchmark, researchers are free to pursue different abstractions
such as atomic navigation actions or navigation skills, as long as it doesn’t use any privileged simulation
information. The final answer is evaluated for correctness using LLM-Match, and the efficiency (see section 2.5)
is computed using the number of atomic actions taken by the agent (to allow for standardization).



Algorithm 1 EQA Agent Signatures

def EMEQA_Agent(Q: str, H: dict) -> str:

""" Function signature for EM-EQA Agents

Args:
- Q: EQA question
- H: episodic memory (history)
- keys -> rgb: image,
depth: image,
C_pose: camera pose,
c_in: camera intrinsics

- H["rgb"] = np.array (T, H, W, 3)

- H["depth"] = np.array(T, H, W, 1)
- H["c_pose"] = np.array (T, 6)

- H["c_in"] = np.array (T, 6)

Returns:
- answer: natural language

return answer

def AEQA_Agent(Q: str,

S: dict) -> Tuple[str, int]:
""" Function signature for A-EQA Agents

Args:
- Q: EQA question
- S: initial state of simulator
- keys -> metadata
- S["metadata"] = Dict[str, Any]

Returns:
- answer: natural language
- T: episode lifetime. Timesteps

taken to answer the question
nnn

env = make_env(S|["metadata"])
env.set_state(S)

return answer, T

D

This section provides additional details and LLM prompts for the blind LLM baseline (appendix D.1), Socratic
LLM w/ Frame Captions example (appendix D.2), and GPT-4V (appendix D.3).

Baseline Agent Details

D.1 Blind LLM Prompt and Details

The prompt used for both our LLaMA-2 and GPT-4 blind LLM baselines is illustrated in figure 7. We use
the 70B parameter version of LLaMA-2 that is fine-tuned for chat, and the gpt-4-0613 version of GPT-4.

D.2 Socratic LLM w/ Frame Captions Example

Figure 8 shows how Socratic LLM w/ Frame Captions baseline produces an answer to a question given K
frames sampled from episodic memory H. We use LLaVa-1.5 to generate image captions. We use the 70B
parameter version of LLaMA-2 that is fine-tuned for chat, and the gpt-4-0613 version of GPT-4 for large

language model.



Figure 7 Prompt used for Blind LLM baselines. The placeholder {question} is replaced by the question (). The same
prompt is used for LLaMA-2 and GPT-4.

You are an intelligent question answering agent. I will ask you questions about an indoor space and you must
provide an answer.

If the question does not provide enough information to properly answer, provide an appropriate guess.

Q: What machine is on top of the stove?
A: The microwave
Explanation: stoves are typically found in kitchens and near microwaves.

Q: What piece of furniture is in the middle of the bedroom?
A: a bed
Explanation: bedrooms almost always contain a bed.

Q: Is the door open or closed?
A: open
Explanation: the door can be in either state, so we just randomly pick one.

Q: {question}

You are an intelligent embodied agent that can answer questions and plan a series of actions. You will
be shown a set of images that have been collected from a single home or office space. Given a user
query, you must output “text" to answer to the question asked by the user. Be as concise and as precise
as possible.
I A computer desk Your response should start with Answer: and should be formatted as [response(text)]
mage with a monitor,
Captioner | | keyboard, mouse, Example:
and a printer. 1. Images: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</ Az A chalkboard with
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A Kitchen table</img_4>, <img_5>A roll of -Vaf_io’; “f.-?{in “:
tape on a desk</img_5> and dr‘awings g;l
Image Ablue chairisin | g ting |Query: What object is on coffee table? Ty bulletin board, and
. ront of a desk with| FTOMPUNG | Anqver: [response("book™] *> | Language g
Captioner acomputer and | ———— a cork board are
printer 2. Tmages: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</ hanging on the well
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A kitchen table</img_4>, <img_5>A roll of e ows
tape on a desk</img_5> windows
] o Query: What is the color of hat hanging on the wall?
A cluttered des| Answer: [response("gray"”
ase with a bulletin Lresponse("gray”)]
Captioner | | poard and a cork Your turn:
board on the wall. Images: <img_1>A computer desk with a monitor, keyboard, mouse, and a printer.</img_1>,
<img_2>A blue chair is in front of a desk with a computer and printer.</img_2>,.....,<img_k>A
cluttered desk with a bulletin board and a cork board on the wall.</img_k>
Query: What is hanging on the wall perpendicular to the windows?

Figure 8 Input example for Socratic LLMs w/ Frame Captions baseline. We first caption each of the K frames with an image
captioner and then prompt the LLM with those captions along with the question. The large langauge model produces
an answer.

D.3 GPT-4V Details

Given an episodic memory H, we draw K frames and pass it to GPT-4V (through the API) in addition to
question @ and prompt w. We use chain-of-thought prompting in w. We choose K = 50 for EM-EQA and
K =75 for A-EQA. Figure 9 shows the prompt w and the input format passed to GPT-4V.

E Sparse Voxel Maps

For building SVM, we use K uniformly-sampled frames from the episode history H. K varies across difference
scenes but the principle is to find the minimum number of K (for reducing the run-time memory consumption)
to cover the whole environment. We process each sampled frame with the following two steps:

Step 1. Detecting object views in the frame using Detic. Each object view v is a tuple of (¢, b), where ¢ is the
2D image crop of the object and b is the 3D bounding box in the world coordinate system. We first extract
object masks from the frame by setting the vocabulary for Detic to more than 500 household object categories.
Then we get the image crop ¢ around each detected mask with an additional margin. We then use depth
information to get a 3D point cloud where we run DBSCAN (11) to further filter out background points, and
compute the bounding box b. Note that we only consider depths that are in the range of [0.1m, 4m).



Figure9 GPT4V input prompt.

You are an intelligent embodied agent that can answer questions. You will be shown a set of images that have
been collected from a single location. Given a user query, you must output ‘text’ to answer to the question
asked by the user.

User Query: {question}
Think step by step.

Step 2. Associating each object view v with a global object instance 0. Most objects will be detected in more than
one frame, and a main goal of SVM is to de-duplicate object views to create global object instances. Each
global object instance o is a tuple of (C,b*), where C is a list a image crops (i.e., ¢) from multiple viewpoints
(i.e., v), and b* is a re-computed 3D bounding box from a concatenated point cloud of different views. For
matching v to o, SVM considers 3D bounding box overlapping and CLIP (36) embedding similarity.

After SVM is constructed, we then select the best crop from C' per global instance o, where the object mask
takes up the largest number of pixels. Each selected crop is passed to LLAVA-1.5 (27) to get the textual
description, and all the descriptions with the instances’ 3D coordinates (center of the bounding box b*) are
wrapped in a prompt for an LLM to answer the question (). Limited by the LLM’s capacity, we only consider
topN (N = 75) instances ranked by the CLIP similarity between their visual feature and @ from all the
instances we detect in SVM.

F Force-A-Guess Details

Figure 10 Prompt used for Force-A-Guess. The placeholders {question} and {old_answer} are replaced by the question
Q@ and initial answer A, respectively. The same prompt is used for LLaMA-2 and GPT-4.

You are an intelligent question answering agent. I need you to fix the answers to these question.

If the proposed answer says the question is unanswerable you should output the action “guess”. Otherwise,
output the action ‘“keep”.

Question: What machine is on top of the stove?
Proposed Answer: the microwave
Action: keep

Question: What piece of furniture is in the middle of the bedroom?
Proposed Answer: The question is unanswerable from the provided images.
Action: guess

Question: {question}
Proposed Answer: {old_answer}

As discussed in section 3, we force baseline agents to guess an answer if they initial abstain — i.e. respond with
an explanation for why the question is unanswerable. Specifically, we first ask an LLM if the initial answer is
an abstaining response, and if so we replace the answer with a guess from a blind LLM. For step 1, use the
prompt shown in figure 10. We provide a comparison baseline performance with and without this procedure
in appendix G.

G Force-A-Guess Results

In table 3, we present results illustrating the performance drop for baseline methods when they are allowed to
abstain, rather than being forced to guess an answer. As expected, performance drops for most methods. We
find that GPT-4-based methods (rows 3, 5, and 7) show the largest drop in performance, which corresponds



Table 3 LLM-Match scores without forcing agents to guess.

% method EM-EQA EM-EQA A-EQA A-EQA
(w/o guess) (w/o guess)

1 GPT-4 33.5 - 35.5 -

2 LLaMA-2 27.7 - 28.8 -

Socratic LLMs w/ Frame Captions

3 GPT-4 w/ LLaVA-1.5 43.6 29.3 (-14.3) 38.1 23.7 (-14.3)

4 LLaMA-2 w/ LLaVA-1.5 36.7 36.2 (-0.6) 30.9 31.2 (+0.4)

Socratic LLMs w/ Scene-Graph Captions

5 GPT-4 w/ ConceptGraphs 36.5 18.5 (-18.0) 34.4 12.4 (-21.9)

6 LLaMA-2 w/ ConceptGraphs 28.7 26.6 (-2.0) 23.8 18.9 (-4.8)

7 GPT-4 w/ Sparse Voxel Maps 38.9 27.3 (-11.5) 34.2 21.2 (-13.0)

8 LLaMA-2 w/ Sparse Voxel Maps 34.3 34.6 (+0.3) 29.9 29.3 (-0.6)

Multi-Frame VLMs

9 GPT-4V 49.5 46.7 (-2.8) 41.8 40.6 (-1.2)

Human 86.8 - 85.1 -

with GPT-4’s propensity to abstain. Specifically, for EM-EQA, GPT-4 abstains 36% to 55% of the time (as
measured by GPT-4). LLaMA-2-based methods abstain 3% to 12% of the time (as measured by LLaMA-2).
Thus, we observe minimal changes in LLaMA-2-based method scores. Finally, GPT-4V abstains 12% of the
time (as measured by GPT-4), corresponding with a small drop in LLM-Match scores. Similar trends are
observe in the A-EQA setting for all methods.

H Full Results

Table 4 Category-level Performance on EM-EQA Rows represent the different agents as described in Section 3 and columns
represent the different category of questions in the dataset, as described in Section 2.3. Bold indicates max in section.

EQA Category

. object object attribute spatial object state functional world LLM-Match
# method A . . )

recognition localization recognition understanding recognition reasoning knowledge (@)
1 GPT-4 15.4 20.3 31.5 31.4 51.0 52.2 34.2 33.5+1.0
2 LLaMA-2 10.7 15.3 22.3 25.0 51.7 44.1 29.7 28.3+1.0
Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 36.5 31.9 45.8 36.1 56.0 54.8 44.8 43.6+1.1
4 LLaMA-2 w/ LLaVA-1.5 30.5 18.8 39.4 31.4 50.1 474 41.7 36.8+1.1
Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 26.4 17.0 40.6 29.1 55.5 48.4 39.9 36.5+1.0
6 LLaMA-2 w/ ConceptGraphs 17.1 13.9 24.4 27.2 43.5 38.1 39.0 28.7+1.0
7 GPT-4 w/ Sparse Voxel Maps 30.0 20.0 49.6 31.7 55.5 45.4 40.8 38.9+1.0
8 LLaMA-2 w/ Sparse Voxel Maps 23.4 11.7 38.9 30.8 52.8 45.4 39.1 34.3+1.1
Multi-Frame VLMs
9 GPT-4V 51.4 53.3 65.2 42.6 57.7 63.8 52.3 55.3+1.1
10 Gemini 1.0 Pro Vision 41.5 33.3 41.9 37.6 56.9 52.2 52.1 44.9+1.1
11 Claude 3 37.0 13.1 39.2 37.0 45.5 37.9 47.3 36.3+1.1
Human 87.9 77.3 87.9 86.7 98.7 81.8 87.2 86.8+0.6

Table 4 presents results on EM-EQA broken down by the seven question categories described in Section 2.3.
Specifically, we present results for the baseline agents described in section 3 as well as two additional multi-
frame VLMs: Gemini 1.0 Pro Vision (41) and Claude 3 (3). We find that EQA agents with visual information



Table 5 Category-level Performance on A-EQA. Rows represent the different agents as described in Section 3 and columns
represent the different category of questions in the dataset, as described in Section 2.3. Bold indicates max in section.
*For A-EQA, GPT-4V scores are calculated on a subset of 184 questions.

EQA Category

. object object attribute spatial object state functional world LLM-Score
# method cL S o . . o §

recognition localization recognition understanding recognition reasoning knowledge (©)
1 GPT-4 25.3 28.4 27.3 37.7 47.2 54.2 29.5 35.5+1.7
2 LLaMA-2 13.7 22.1 16.2 29.7 43.3 50.4 28.8 29.0+1.6
Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 25.0 24.0 34.1 34.4 56.9 53.5 40.6 38.1+1.7
4 LLaMA-2 w/ LLaVA-1.5 19.7 11.7 31.2 28.3 48.1 46.1 35.8 30.9+1.7
Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 25.3 16.5 29.2 37.0 52.2 46.8 37.8 344418
6 LLaMA-2 w/ ConceptGraphs 13.3 11.9 18.8 27.9 31.7 31.7 36.5 23.9+1.6
7 GPT-4 w/ Sparse Voxel Maps 29.0 17.2 31.5 31.5 54.2 39.8 38.9 34.2+1.8
8 LLaMA-2 w/ Sparse Voxel Maps 16.7 9.7 33.4 29.0 47.2 40.5 37.5 29.9+1.7
Multi-Frame VLMs
9 GPT-4V* 34.0 34.3 51.5 39.5 51.9 45.6 36.6 41.843.2
Human 89.7 72.8 85.4 84.8 97.8 78.9 88.5 85.1+1.1

perform well in recognizing objects and their attributes, and make better use of this information to answer
questions that require world knowledge. However, on other categories, their performance is closer to the blind
LLM baseline (GPT-4), indicating substantial room for improvement on OpenEQA. Table 5 presents results
per category on A-EQA for the baselines described in section 3. The results are consistent with the results on
EM-EQA, however we observe an overall performance drop due to the challenges of dealing with the longer
frontier exploration trajectories that were use for our baselines on A-EQA (see section 3).

I LLM-Match Human Alighment and Details

Table 6 Varying LLM used for scoring. On a subset of 100 questions with answers from GPT-4, GPT-4 scoring shows excellent
agreement with human judgement, while using other LLMs shows lower correlation (Spearman correlation coefficient).

Scorer LLM ChatGPT-4 ChatGPT3.5 LLaMA 2 Human
ChatGPT-4 1.00 0.66 0.68 0.88
ChatGPT3.5 - 1.00 0.66 0.61
LLaMA 2 - - 1.00 0.63
Human - - - 1.00

Table 7 Per-annotator Spearman-p. Human scoring has excellent agreement with both other humans and with LLM scoring.

Annotator vs. Other Humans vs. LLM
0 0.91 0.91
1 0.91 0.91
2 0.92 0.90
3 0.93 0.94

Evaluating open-vocabulary responses to questions is an open challenge in Al, and in particular for question-
answering. While human evaluation remains the gold-standard, it is also expensive and time consuming. An
automatic evaluation metric is preferable for benchmarking, fast iteration, and model selection. We thus use
an automatic LLM-Based evaluation metric in this work as described in Section 2.4. We performed analysis
experiments to test the quality of this metric along two axis: (1) How closely aligned is the LLM-Match
metric with human evaluators? (2) How sensitive is the LLM-Match metric towards specific choice of prompts
and the LLM?

Human Alignment. To answer the first question, we designed an experiment to measure the agreement between
LLM-Match metric and human evaluators. For this analysis, we uniformly sampled a subset of 300 questions
from OpenEQA. To ensure coverage of the answer distributions (i.e. poor, fair, and good answers), we sampled



100 responses from a blind LLM (LLaMA-2), multi-frame VLM (GPT-4V), and human baseline answers. In a
double blind study, we then asked 4 human evaluators to score the 300 responses using an evaluation prompt
similar to the one used by LLM-Match. The evaluators were provided no information about the source of the
response (except an MD5 hash of the question ID, response source, and annotator ID). We found a Spearman’s
p = 0.909 between human and LLM evaluation (bootstrap CI=(0.883,0.928), N=9999), indicating excellent
agreement with human judgement. Table 7 shows the Spearman’s p (a measure of correlation) between (1)
each annotator and other humans and (2) each annotator and GPT-4 scoring. Human evaluators correlated
with other humans in p € [0.91,0.93], and with LLMs in p € [0.90,0.94].

Choice of LLM. Table 6 shows rho between human evaluators and different LLMs, on the subset of 100 questions
from GPT4V. GPT-4 scoring shows good agreement with human scoring (p = 0.88), while GPT3.5 (p=0.66)
and LLaMA 2 (p=0.68) show lower correlation. We believe that future LLMs will show higher agreement
with human annotators, and in the meantime we recommend only using GPT-4 for scoring.

J LLM-Match Robustness Details

Table 8 LLMRole. Correlation between scores when changing the ‘role’ of the LLM in the scoring prompt (Spearman correlation
coefficient).

Role Al “Score Master” Professional
Al 1.00 0.97 0.96
“Score Master” - 1.00 0.97
Professional - - 1.00

Table 9 Match criterion for a ‘5. Correlation between scores when changing the criterion in the scoring prompt (Spearman
correlation coefficient).

Match Crit. Perfect Contains Pro Person
Perfect 1.00 0.96 0.95 0.96
Contains - 1.00 0.97 0.97
Pro - - 1.00 0.98
Person - - - 1.00

Table 10 Temperature of scoring LLM. Changing the temperature of GPT-4 used in scoring (Spearman correlation coefficient).

Temp 0.01 0.1 0.2 0.3
0.01 1.00 0.98 0.98 0.98

0.1 - 1.00 0.97 0.98
0.2 - - 1.00 0.97
0.3 - - - 1.00

Our LLM-Match uses the specific evaluation prompt described in figure 6. The metric is stable under small
permutations of the prompt and LLM-Match settings as illustrated in Table 8, Table 9 and Table 10, which
show the correlation in LLM-Match scores using different prompting strategies, assessed on 500 GPT-4V
answers.

Role: Table 8 demonstrates that changing the LLM’s role from ‘A’ to ‘Score Master’ or ‘professional evaluator’
does not significantly change the results, and scores between any two treatments have a tight correlation with
a Spearman’s p all above 0.95.

Match criterion: Similarly, Table 9 shows analogous results (p > 0.95) when changing the description of a ‘5’
from ‘perfect match’ to ‘contains correct answer’, ‘similar to a reasonable person’, or ‘reasonable professional’.

Temperature: The stochasticity in the evaluation function has negligible impact as well, as shown by varying
the temperature and seed. Table 10 shows results when varying the temperature used in the GPT-4 scorer
from 0.01-0.3, with results all >0.97.

K 3D Coordinate Ablation

Figure 11 compares the EM-EQA performance of the Socratic baseline that uses Sparse Voxel Map captions
with and without including 3D bounding box information in the text descriptions. Results show that explicit
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Figure 11 Ablating 3D location for scene-graph agents. Removing bounding box locations and extent had no significant
effect for agents using either LLM.

bounding box location and size information from the scene graph does not significantly change the performance
of scene-graph based agents. This suggests that neither LLM, trained with only text information, is able to
effectively use the 3D location information.

L OpenEQA Dataset Examples

Additional examples from the ScanNet and HM3D splits of OpenEQA are provided in the Figures 12, 13,
and 14.
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Question-Answer Pairs (Q, A*)

[Object Recognition]
Q: What is the red object on the chari?
A”": a backpack

[Attribute Recognition]
Q: Among all the chairs, what is the unique color of the chair?

A": green
[Spatial Understanding]
Q: Can 10 people sit in this room?
A" yes
[Object State Recognition]
Q: Is the plastic water bottle open?
A":no

[Functional Reasoning]
Q: What can I use to write something on using my pencil?
A”: the piece of paper

[World Knowledge]
Q: Were students here lately?
A" yes

[Object Localization]
Q: Where is my unfinished Starbucks drink?
A”: on the table near the front whiteboard
Extra Answers: ['On the second table from the front’,
'In the center of the second table.’,
'On the second table from the front’,
'On the table near the windows’]

Figure 12 OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history
H are displayed. Thus, some questions may require additional visual information to answers.

Episode History H

Question-Answer Pairs (Q, A*)

[Object Recognition]
Q: What object is on top of the work desk?

A": shelf
[Attribute Recognition]
Q: what color is the task chair?
A": black
[Spatial Understanding]
Q: which object is closer to the window, the bed or the trash can?
A" bed
[Object State Recognition]
Q: Is the closet door fully closed?
A" no

[Functional Reasoning]
Q: The closet is full. Where can I store a suitcase in this room?
A’": Under the bed

[World Knowledge]
Q: What are the two main functions or purposes of this room?
Why did you arrive at those conclusions?
A”": Sleeping, since there is a bed. Working, since there is a task
chair and desk.

[Object Localization]
Q: Where is the two-tier shelf?
A": on top of the desk
Extra Answers: ['On top of the desk.’,
'On the left when you first walk in to the room.’,
'above the desk infront of the chair’,
‘on top of the desk']

Figure 13 OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history
H are displayed. Thus, some questions may require additional visual information to answers.



Episode History H

Question-Answer Pairs (Q, A%)

[Object Recognition]
Q: what is on the chair?
A’: a soft pillow

[Attribute Recognition]
Q: is the outside door open or closed?
A’: open

[Spatial Understanding]
Q: is the table in the living room clean?
A": yes

Figure 14 OpenEQA dataset examples from an HM3D scene. Note that only a subset of frames from the episode history H

[World Knowledge]
Q: what is special about the wall in the living room?
A’: it seems to be made of stone

[Object Localization]
Q: where is the standing lamp?
A”: next to the bed in the bedroom
Extra Answers: ['in the bedroom',
'to the left of the bed',
'the bedroom',
'The room with the bed and the bathroom']

are displayed. Thus, some questions may require additional visual information to answers.
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